中医体质和临床数据关联的机器学习用于预测自然流产
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Traditional Chinese Medicine Constitution and Clinical Data Association with Machine Learning for Prediction of Spontaneous Abortion
Author:
Affiliation:

The Second clinical medical college, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    背景:早期预防对于治疗复发性自然流产(SA)至关重要。目的:本次回顾性研究采用多种机器学习方法开发SA预测模型,并判断SA的潜在风险。方法:采用病例对照实验研究方法,共有663名孕妇参与,其中SA患者586例,正常分娩女性77例。研究数据包括25个中医体质和SA相关的临床特征数据。本文使用了逻辑回归, 梯度提升决策树, K-近邻算法,分类与回归树,多层感知机,支持向量机, 随机森林算法和XGBoost 等8种机器学习技术预测SA,并使用10倍交叉验证和计算诊断测试的特征参数,包括准确性、精确度、召回率、F1分数和ROC曲线的AUC值来评估应用模型的预测能力。结果:8种机器学习技术的F1分数均高于97.5%,其中梯度提升决策树对SA的预测结果最好,其准确性、精确度、召回率、F1分数和ROC曲线的AUC值分别为97.9%、99%、98.6%、98.8%和97.3%。结论:本文结合中医体质和临床数据,对患SA的风险进行了准确预测。

    Abstract:

    Background:Early prevention of Spontaneous Abortion (SA) is essential for the treatment of recurrent spontaneous abortion. Objective:In this retrospective study, a variety of machine learning methods were used to develop predictive models and diagnose the potential risk of SA.Methods:A total of 663 pregnant women participated in the case-control study, 586 of which were SA patients and 77 were normal parturition women. The research data included 25 features of Traditional Chinese Medicine (TCM) constitution and clinical data related to SA. This work utilized 8 machine learning techniques including logistic regression, gradient boosting decision tree, k-nearest neighbor, classification and r-egression tree, multilayer perceptron, support vector machine, random forest and XG-Boost to predict SA. The performances of the applied models were evaluated by using the method of 10-fold cross-validation and by computing the diagnostic test characteristics, including accuracy, precision, recall, score, and the AUC of ROC curve.Results:The scores of these eight machine learning techniques were all above 97.5%. Among them, gradient boosting decision tree had the best prediction result on SA. The accuracy, precision, recall, score, and the AUC of ROC curve of gradient boosting decision tree were 97.9%, 99%, 98.6%, 98.8%, and 97.3%, respectively. Conclusion:The paper has accurately predicted the risk of SA combined with TCM constitution and clinical data.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-08
  • 出版日期: