紫色杆菌素对由顺铂处理的膀胱癌细胞的化疗增敏作用
DOI:
作者:
作者单位:

Genetics Department, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600, Montevideo, Uruguay;Biochemistry and Molecular Biology, Faculty of Sciences, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay;Biodosimetry Service, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600, Montevideo, Uruguay

作者简介:

通讯作者:

中图分类号:

基金项目:


Chemosensitizer Effect of Violacein on Cisplatin-treated Bladder Cancer Cells
Author:
Affiliation:

Genetics Department, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600, Montevideo, Uruguay;Biochemistry and Molecular Biology, Faculty of Sciences, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay;Biodosimetry Service, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600, Montevideo, Uruguay

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    背景:膀胱癌已成为全球第十大高发癌症,由于局部治疗易多次复发和持续演进的特点,给医疗服务造成沉重负担,因此有必要研发新的治疗方案,提高对膀胱癌治疗的有效性。选择抗肿瘤细胞增殖作用的天然化合物可能是一个很好的联合辅助化疗的选项。微生物是天然化合物的一大主要来源,从冷适应微生物中获取的色素能够在生物技术领域的发展中得到更广泛的应用。紫色杆菌素(violacein)是一种紫色色素,可由多种细菌菌株产生。课题组之前的研究证明,从Janthinobacterium sp.中提取的紫色杆菌素在极低浓度即对HeLa细胞具有抗增殖作用。目的:本研究旨在探讨紫色杆菌素对膀胱癌细胞的抗增殖活性,并测试不同浓度的紫色杆菌素对顺铂处理的两种肿瘤细胞(分别为来源于原位癌的T24和腹膜后转移的253J膀胱癌细胞系)的协同增效作用。方法:i) 对T24和253J两种膀胱癌细胞系分别进行Resazurin细胞活力检测和流式细胞术分析,以观察紫色杆菌素是否影响细胞活力并诱导细胞死亡。ii)为研讨紫色杆菌素是否对膀胱癌细胞产生促顺铂增敏作用,分析了不同剂量的顺铂和紫色杆菌素之间的药物相互作用,并确定了它们的药物联合指数。iii)通过分析对细胞微核率和γH2AX foci的诱导作用,以及彗星实验,检测紫色杆菌素对原发性遗传损伤的诱发作用。 结果:24 h时,紫色杆菌素对两种细胞系的最大半数抑制浓度均在500 nM左右,与10 μM顺铂联合使用时,其抑制浓度降至400 nM以下,表明紫色杆菌素对两种受试细胞系均具有抗增殖和促顺铂增敏作用。流式细胞术结果表明,无论是单独使用或是与顺铂联合使用,300 nM的紫色杆菌素可导致明显的细胞周期阻滞和细胞死亡百分比升高。另一方面,微核率分析未发现遗传损伤增高,并且紫色杆菌素与顺铂联合治疗时,微核诱导率略有下降。彗星实验显示,单独使用紫色杆菌素不会诱导T24或253J细胞中的遗传损伤,但它与10 μM顺铂联合使用能够减轻T24或253J细胞中的遗传损伤。同样,在两种细胞系中,所有测试的实验剂量下均未观察到紫色杆菌素引起γH2AX foci聚集频率增加。结论:本研究表明,紫色杆菌素对膀胱癌细胞株具有体外抗增殖和促顺铂增敏作用。有趣的是,在所有测试剂量下,紫色杆菌素不仅未诱发遗传毒性,还降低了顺铂产生的遗传毒性。

    Abstract:

    Background: Bladder cancer is the tenth most common cancer worldwide. Considering its high prevalence (vulnerability to multiple recurrences and progression despite local therapy), which leads to a substantial health service burden, it becomes necessary to develop new strategies to increase the effectiveness of bladder tumor therapy. Natural compounds with antiproliferative effect on cancer cells could be a good choice for co-adjuvant chemotherapy. Microorganisms are one of the main sources for natural compounds. Pigments extracted from the cold-adapted microorganisms can contribute to the development of a broader range of applications in biotechnology. Violacein is a purple pigment commonly produced by many bacterial strains. We have previously shown that very low concentrations of violacein extracted from Janthinobacterium sp. produced an antiproliferative effect on HeLa cells. Objective: With the aim to determine if violacein has an antiproliferative activity on bladder cancer cells, as well as to test if it has synergistic effects on cisplatin treated cells in vitro, T24 and 253J cell lines (derived bladder cancer cells from carcinoma in situ and retroperitoneal metastasis, respectively) were exposed to different concentrations of violacein in the presence or absence of cisplatin. Methods: i) Resazurin assay and flow cytometry were performed in two bladder cancer-derived cell lines, namely T24 and 253J, to see if violacein affects cell viability and induce cell death. ii) To find out whether violacein sensitizes bladder cancer cells to cisplatin, the drug interaction among different doses of cisplatin and violacein was analyzed, as well their combination index was determined. iii) The effect of violacein to induce primary genetic damage was determined through the analysis of induced micronuclei frequency and ??H2AX foci, as well as performing the comet assay. Results: The half-maximal inhibitory concentration of violacein at 24 h for both cell lines were around 500 nM, and decreased below 400 nM in combination with 10 μM of cisplatin, indicating antiproliferative and sensitizing effects of violacein to cisplatin in both cell lines tested. A clear cell cycle delay, as well as an increase in the percentage of cell death was observed by flow cytometry at 300 nM of violacein, either alone or in combination with cisplatin. On the other hand, the analysis of the micronucleus frequency did not evidence an increase in genetic damage. Moreover, in combined treatments with cisplatin there was a slight decrease on micronucleus induction. Besides, the induction of genetic damage was not observed through comet assay when cells were treated with violacein alone, however, when cells were treated with violacein in the presence of cisplatin (10 μM). The production of genetic damage was diminished in T24 or 253J cells. By the same token, increase in the frequency of ??H2AX foci by violacein was not observed at any tested dose in both cell lines. Conclusion: It was shown that violacein has an in vitro antiproliferative effect in bladder cancer cell lines, sensitizing them to cisplatin. Interestingly, at doses tested, violacein did not induce genotoxicity and reduce the genotoxic effect produced by cisplatin.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-08
  • 出版日期: