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a b s t r a c t 

Background: Coumarins are secondary metabolites from the phenylpropanoid-type biosynthesis in higher plants. 
A plethora of potential phytopharmacological activities have been described for derivatives of the coumarin scaf- 
fold: hepatoprotective, antineoplastic, antimicrobial, antituberculosis, antiviral, anti-inflammatory anticoagulant, 
or antithrombotic effects. 
Objective: A computer-based quantitative structure – activity relationships (QSAR) study for a series of 4 ‑chloro- 
3-formylcoumarins was carried out. 
Methods: To this end we generated the 3D models of 17 published coumarin structures, calculated their physico- 
chemical properties (descriptors) to correlate them to their experimentally known biological activities measured 
as inhibition concentrations to block the target enzyme activity. Our proposed approach used free molecular 
modeling software and applies our scripts written in the programming language R. 
Results: The final multiple regression models achieved satisfactory results with a small number of descriptors 
– all of which were statistically significant and meaningful in the field of pharmacodynamics to develop new 

3-formylcoumarins with enhanced activities targeting the human thymidine phosphorylase enzyme. 
Conclusion: On theoretical grounds, our in silico research contributes in a crucial step in the field of comple- 
mentary phyto-medicine. This step is located between in vivo pharmacological observations of plant extracts on 
ethnopharmacological, preclinical or controlled clinical levels and the need to identify – at an atomic scale – all 
those plant ingredients responsible for the biological actions under scrutiny. Our simulations shed light on the 
modification of phyto-medicine’s physicochemical properties to enhance the interaction with their biomolecular 
target in the patient’s body. 
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. Introduction 

Coumarins are the result of the phenylpropanoid – type biosynthesis
f secondary metabolites in higher (developed) plantes. Common di-
otyledoneous families that synthesize coumarins are Apiaceae and Ru-
aceae. Natural coumarins have been studied for a wide range of phar-
acological activities: hepatoprotective, antineoplastic (cancer), an-

imicrobial, antituberculosis, antiviral or anti-inflammatory activities.
n recent years, seminal reviews described the coumarin scaffold and
aid the groundwork for structure – activity relationships for their hith-
rto known pharmacological effects ( Revankar et al., 2017 ; Zhu et al.,
018 ; Singh et al., 2019 ; Zhang et al., 2019 ; Annunziata et al., 2020 ;
rusty et al., 2020 ; Tafesse et al., 2020 ; Al-Warhi et al., 2020 ). Nat-
ral coumarins are found especially in seeds, roots, or leaves, and es-
ecially in tonka beans from legume trees ( Garrard, 2014 ). Such parts
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f plants rich in coumarin derivatives have been administered to pa-
ients as dried parts of plants to conserve them. Of note, the etymo-
ogical root of the word “drug ” is the old anglo-saxon word “trok ”,
n modern English: “dried ”. In addition to the interest of complemen-
ary medicine in coumarins, they have potential applications in modern
harmacotherapy, too. Commercial importance of Warfarine and Phen-
rocoumon have achieved as anticoagulant and antithrombotic agents,
hich are derivatives of antioxidant vitamin K ( Quiroga et al., 2017 ;
uiroga et al., 2018 ; Scior et al., 2018 ). 

Thymidine phosphorylase ( TP ) is a nucleoside metabolism enzyme
hich catalyzes the reversible conversion of thymidine to thymine and
-deoxy- 𝛼- D -ribose-1-phosphate. This enzyme is expressed in the nu-
leus and in the cytoplasm ( Fig. 1 ). TP is the target protein. It has been
hown to be overexpressed in several types of cancer in response to
tressful cellular conditions. The associated biochemical processes pro-
ote tumor angiogenesis. 
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Fig. 1. Reaction catalyzed by thymidine phosphorylase. Thymidine (left most) is recognized by the enzyme and a new ester bond is format between the sugar moiety 
and the phosphate group, while Thymine is liberated (right most). 

Fig. 2. The general structure (scaffold) of the R-substituted coumarin molecules 
under scrutiny. 
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Certain coumarins possess cytostatic (growth inhibitory) properties
hereas others exhibit cytotoxic activities ( Marshall et al., 1994 ). It is

mportant to highlight the reports on coumarins with the hydrazide frac-
ion in position C-3 . They have shown that the combined hydrazide
 hydrazone group (-CO 

–NH 

–N CH-) has an important role within the
olecules that act as antitumor agents ( Emami and Dadashpour, 2015 ).
hrough various studies, coumarin derivatives substituted at their C-3
arbon position with a hydrazide moiety have been found to have anti-
umor effects ( Huang et al., 2011 ; Thakur et al., 2015 ; Luo et al., 2017 ;
hakur et al., 2021 ). Here 17 structures were taken from one litera-
ure source. They are known thymidine phosphorylase inhibitors. Their
easured IC 50 values were taken from the same publication ( Taha et al.,
018 ). In Fig. 2 , the red circle shows the 3-formyl-hydrazone fraction
t this position C-3 of the 4 ‑chloro substituted coumarin scaffold. This
caffold constitutes a bicyclic aromatic 1,2-benzopyrone. It comprises a
actone group, i.e. intracellular ester group. The chemical name of the R-
ubstituted scaffold is 4 ‑chloro-2-oxo-2H-chromene-3-carbohydrazone.
ts potential cleavage site is contoured by a colored circling line. It also
arks the spot where the catalytic reaction takes place when the struc-

ures are bond to the active site of the human thymidine phosphory-
ase. Further structural and mechanistic details can be found in Fig. 1
o Fig. 4 and Table 1 by Taha et al. (Taha et al., 2018) . General notes
bout stability and decay of hydrazone drugs have been published ear-
ier ( Scior and Garces-Eisele, 2006 ). In particular, the presence of pyr-
ole or thiophene substitutions in position “R ” in Fig. 2 is believed to
nhance the inhibitory effect. Of note, in isocoumarin, which are also
atural products from higher plants, the lactone group has an inverse
rientation. 

This study seeks to complement the extant literature in the field
f complementary medicine and is embedded in our ongoing herbal
esearch. It will connect the acquired knowledge from ethnopharma-
ology and phytotherapeutical treatment of patients with pharmaco-
ogical action mechanisms at an atomic scale ( Bernard et al., 2002 ;
2 
londeau et al., 2010 ; Do et al., 2015 ). Modern drug development
esearch is in need of correlating clinical observations with basic re-
earch on molecular level – and herbal research work in complementary
edicine is no exception. 

. Materials and Methods 

.1. Drug development assisted by molecular simulations 

In the early discovery stages of new drugs from natural sources, a
rug profiling procedure may be carried out by which new molecules
ith therapeutic potential are identified, making possible the combined
se of computational, experimental and clinical models ( Do et al., 2015 ).
ith the advent of computer-aided molecular simulations, it has been

ossible to recreate several complex natural processes. With the help of
his technology a better understanding of physiological processes can
e achieved in which a response is sought in order to obtain better re-
ults in the development of new treatments. Therefore, the application
f the quantitative computational approach proposes numerical equa-
ions to change chemical structures. Such structural modifications help
trengthen their drug affinity to the biomolecular targets and at the same
ime enhance their therapeutic effect ( Medina-Franco et al., 2015 ). 

.2. Quantitative structure-activity relationships 

Quantitative structure-activity relationships studies ( QSAR ) gener-
lly aim at establishing predictive statistical models of the experimen-
ally observed biological activities. Albeit, they do not only serve as pre-
ictive tools to develop new and better drug candidates, but also serve
o analyze existing series of analogous drugs ( Scior et al., 2009 ). The
esults of the present QSAR study contribute for future research to de-
elop new drugs with a 3-formylcoumarin scaffold ( Lozano-Aponte and
cior, 2012 ). In this analysis, an attempt is made to express the bio-
ogical activity as a linear combination of different descriptors, thus
ostulating the form of a linear relationship between the activity and
he relevant molecular properties. The coefficients in the equations pro-
ide contributions to predict the activity. To start any QSAR study a set
or series) of analogous molecules is needed, AKA the structural input
ata. They are structurally related and share a common pharmacody-
amic property, i.e. the same mechanism of action which also implies
hat they (must) have not only the same molecular target but also a
ommon binidng site in the target structure. On the other hand, biolog-
cal response data are needed for each molecule, such as EC 50 (effective
oncentration in 50% of the sampled observations), IC 50 (inhibition con-
entration of 50% of the population), LD 50 (the dose required for kill
alf of the total population). Finally, the physicochemical properties also
alled molecular descriptors are needed. They are calculated using the
ppropriate software and using the models of the previously designed
hemical structures ( Lozano-Aponte and Scior, 2012 ; Roy et al., 2015 ).
ultiple linear regression ( MLR ) is an extension of simple linear regres-
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Table 1 

All 17 coumarin-derived molecules with their respective molecular structures in SMILES 
format. 

ID 2D drawings with SMILES annotations 

1 

O = C(NN = CC1 = C(Cl)C2 = CC = CC = C2OC1 = O)C1SC = CC = 1Cl 

2 

O = C(NN = CC1 = C(Cl)C2 = CC = CC = C2OC1 = O)C1C = CC(Br) = CC = 1 

3 

COC1 = CC( = CC = C1OC)C( = O)NN = CC1 = C(Cl)C2 = CC = CC = C2OC1 = O 

4 

OC1C( = CC = CC = 1O)C( = O)NN = CC1 = C(Cl)C2 = CC = CC = C2OC1 = O 

5 

OC1C2 = CC = CC(F) = C2N = CC = 1C( = O)NN = CC1 = C(Cl)C2 = CC = CC = C2OC1 = O 

6 

[O]N([O])C1C = C2C = C(OC2 = CC = 1)C( = O)NN = CC1 = C(Cl)C2 = CC = CC = C2OC1 = O 

( continued on next page ) 

3 
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Table 1 ( continued ) 

ID 2D drawings with SMILES annotations 

7 

O = C(NN = CC1 = C(Cl)C2 = CC = CC = C2OC1 = O)C1C = CC = CC = 1 

8 

OC1C = C(C = C(O)C = 1O)C( = O)NN = CC1 = C(Cl)C2 = CC = CC = C2OC1 = O 

9 

COC1C = C(OC)C( = CC = 1)C( = O)NN = CC1 = C(Cl)C2 = CC = CC = C2OC1 = O 

10 

CC1 = CC(C) = CC = C1C( = O)NN = CC1 = C(Cl)C2 = CC = CC = C2OC1 = O 

11 

COC1C = CC( = CC = 1)C( = O)NN = CC1C( = O)OC2 = CC = CC = C2C = 1Cl 

12 

COC1 = CC = CC = C1C( = O)NN = CC1C( = O)OC2 = CC = CC = C2C = 1Cl 

13 

COC1C = C(C = C(C = 1)OC)C( = O)NN = CC1 = C(Cl)C2 = CC = CC = C2OC1 = O 

( continued on next page ) 

4 
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Table 1 ( continued ) 

ID 2D drawings with SMILES annotations 

14 

CC(C)(C)C1C = CC( = CC = 1)C( = O)NN = CC1 = C(Cl)C2 = CC = CC = C2OC1 = O 

15 

OC1 = CC = CC = C1C( = O)NN = CC1 = C(Cl)C2 = CC = CC = C2OC1 = O 

16 

O = C(NN = CC1 = C(Cl)C2 = CC = CC = C2OC1 = O)C1 = CC2C = CC( = O)NC = 2C = C1 

17 

O = C(NN = CC1 = C(Cl)C2 = CC = CC = C2OC1 = O)C1 = CC = CC = C1Cl 

Abbreviation: ID = identification number for each molecule. 
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ion ( SLR ) that occupies more than one independent variable ( IDV ) and
nly one dependent variable ( DV ). In rare cases there is more than one
V denominated at times as multivariate model ( Scior et al., 2009 ). MLR

s favored for its simplicity and ease of interpretation since the model
ssumes a linear relationship between the property of the compound
enoted by the letter Y and its vector X of characteristics which are gen-
rally calculated as numerical descriptors of ligand structures. Y and X
alues are traditionally situated on the Y and X axis, respectively. There-
ore, with the fitted model, the property of an unknown compound can
e predicted ( Dehmer et al., 2012 ). In general terms, the equations of
ny MLR model are written as a mathematical equation: 

 = α + β1 X 1 + β2 X 2 + ⋯ βn X 1 

here: 
Y: the DV to predict; X: the IDVs to describe each molecule numeri-

ally; 𝛼 and 𝛽: unknown parameters to be estimated by statistical means.
Simplicity of our resulting equations and the use of chemically mean-

ngful descriptors indirectly constitute compelling evidence to justify the
ostulation of a(n approximately) linear relationship between the activ-
ty and the relevant molecular properties. 

.3. Statistical tool and scripts 

“R ” is a programming language and computing environment for
tatistics and graphics. Our script used basic R instructions which are
ntegrated in all (newer) R versions ( version 2.x.y or later). It was down-
oaded from its original source ( The R Project for Statistical Comput-

ng, 2021 ). It can be installed on MS Windows, Unix or Linux com-
uters or those running Mac OS. The MLR models and other statistical
5 
alculations were carried out by means of our scripts (see Supplemen-
ary Materials). To obtain the linear equations of the QSAR models we
sed our scripts written in R language ( The R Project for Statistical Com-

uting, 2021 ). Thanks to its basic graphic packages for linear models
ur quantitative results were also represented through different types
f graphs. 

.4. Molecular modeling 

From the Protein Data Bank ( Berman et al., 2000 ), the target protein
as retrieved. It constitutes a three-dimensional crystal structure of the
rotein thymidine phosphorylase from Escherichia coli . Said structure is
o-crystallized with an appropriate inhibitory ligand. The latter would
erve for the modeling and optimization of the molecules to be devel-
ped. 

With the help of the Vega ZZ program, all 3D structures of the
oumarin-derived molecules were generated. Their geometries were
ptimized (potential energy relaxation) under the Tripos force field
 Clark et al., 1989 ). 

Through the use of various specialized computer programs such as
ega ZZ ( Pedretti et al., 2021 ), Swiss ADME ( Daina et al., 2017 ), E-Dragon

 Tetko et al., 2005 ) and Alva Desc 1.0 ( AlvaDesc: Molecular Descriptors,

021 ), the physicochemical descriptors were obtained, which will serve
o construct the multiple regression linear equation. These descriptors
ill be selected using theoretical and statistical methods to appropri-
tely represent the atoms or chemical groups in the studied ligands. 

Once the molecular descriptors had been chosen, our QSAR
odeling was carried out, using statistical analysis. The downsides

nd pitfalls thereof have already been discussed and Published by
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Fig. 3. Structural superposition of all 17 compounds with a common 3- 
formylcoumarin scaffold (on the left side). The highest chemical variation is 
visible at the right-hand side. 

Table 2 

Programs and numbers of descriptors 
obtained from each of them. 

Software Descriptors 

Vega ZZ 11 
Swiss ADME 23 
E-Dragon 21(1666) 
AlvaDesc 1.0 21 (5305) 

S  

l  

s  

E

3

3

m

 

s  

2  

t  

A  

a  

a  

t  

m  

e  

e  

fl  

t  

s  

l

3

 

(  

T  

c  

o

3  

 

t  

s
 

S  

D  

g  

a  

c
 

t
 

v  

w  

d  

c  

s

3

 

R  

d  

p  

o  

s  

u
 

e  

w  

a  

t  

a  

c  

s  

fi  

f
 

i  

a  

s  

T  

m  

i  

p  

t  

t  

p  

e  

h  

o  

h  

e  

c

3

 

e  

f  

w  

i  

w  

l  

t  

R  

T  

H  

t
 

s  

m

cior et al. (Scior et al., 2009) . In particular, our study avoided the fol-
owing problems implicated in QSAR modeling: “Pitfall: Linearity As-
umption ”, “Overfitting Test ”, or “Pitfall: Over- and Under-Determined
quations ” (cf. section results with discussion about model 8). 

. Results and Discussion 

.1. Modeling the analog thymidine phosphorylase protein inhibitor 

olecules 

We retrieved several PDB entries for inspection to gain deeper in-
ight and selected the structure with PDB code 4EAD ( Timofeev et al.,
013; Timofeev et al., 2014 ). It contains the X-ray structure of enzyme
hymidine phosphorylase, having an inhibitory ligand at its active site.
 total of 25 PDB entries (last visit in March 2022) were found less suit-
ble: only three showed a target protein in complex with inhibitory lig-
nds at the active site which resemble less to our series of compounds
han 4EAD. Table S1 lists the PDB entries under scrutiny (cf. Supple-
entary Materials) ( Balaev et al., 2016; Norman et al., 2004; Pugmire

t al., 1998; Pugmire and Ealick, 1998; Timofeev et al., 2013; Timofeev
t al., 2014 ). The ligand found in PDB code 4EAD constitutes 3 ′ -azido-2 ′ -
uorodeoxyuridine. It was used as a 3D template structure to construct
he 17 molecules derived from the 3-formyl coumarin scaffold. Its ob-
erved position at the active site of the crystal complex helped guide
igand replacement (cf. Section 3.2 ). 

.2. Construction of the 17 molecular models 

The molecules were built in the Vega ZZ 3.2.1.0 software version
 Pedretti et al., 2021 ) and saved in SMILE format ( Weininger, 1988 ).
he complexed ligand of the target enzyme was replaced by the 17
oumarin molecules (Table S1). In this way, the sensible superposition
f the molecules could be obtained ( Fig. 3 ). 

.3. Calculation of molecular descriptors through specialized modeling tools

Table 1 lists the 17 coumarin derivatives with their respective struc-
ures in SMILES format. These formats were used to calculate the de-
criptors in the programs for this purpose. 

In the program Vega ZZ , 11 descriptors were obtained, while in the
wiss ADME program, 23 were obtained. In addition, using the free E-

ragon program, 21 were considered, whereas in the AlvaDesc 1.0 pro-
6 
ram 21 descriptors were generated. The values taken from E-Dragon

nd AlvaDesc 1.0 were identical as it turned out that both use the same
alculation methods ( Table 2 ). 

For the next step in QSAR model generation a Table 3 was prepared
o list the selected descriptors to build the preliminary QSAR models. 

During the stage of descriptor selection, both statistical tools and
arious theoretical criteria are used, which is why all the available data
ere taken into account to build the preliminary QSAR models. Table 4
ocuments the independent variables taken for each model. The more
omplex equations were those with a maximum of 4 descriptors and the
mallest those with only 2 IDVs. 

.4. Analysis of preliminary QSAR models 

The statistical data as well as the graphics were obtained with the
 software. Statistical methods explain quantitatively how our indepen-
ent variables influence the values of the experimental response or de-
endent variable (IC 50 ). Table 5 reports the values for all coefficients
f determination (R 

2 ) for all nine QSAR models. R 

2 is a statistical mea-
ure reflecting the variation in the response variable explained by the
nderlying descriptors. 

Model number one (model 1, for short) possesses the highest co-
fficient of determination ( “R squared ”). It is based on 4 descriptors
hich are shown in Table 4 , however when performing the statistical
nalyzes of each one, model 8 was considered more appropriate, thanks
o a twofold reason: (i) its good prediction of biological activity; (ii)
s well as its contribution of fully comprehensive, informative physico-
hemical descriptors to the inhibitory activity of all 17 molecules under
crutiny. Upon inspection of all nine models, model 8 was seleted as the
nal model. Hence, the following statistical analysis focused on details

or model 8. Its two descriptors were listed in Table 6 . 
BIC4 describes the nature of bonding for each molecule in a topolog-

cal way. Bonding is closely related to the ability to form bonds between
toms by exchange of electrons. And this ability is commonly well repre-
ented by electronegativity of bonded atoms ( Todeschini et al., 2008 ).
PSA (Tot) has been chosen as it shows the correlation with passive
olecular transport across membranes. This descriptor allows predict-

ng human intestinal absorption, permeability of cell monolayers, and
enetration of the blood-brain barrier. It is obtained from a software
hat determines it by adding the tabulated surface contributions of the
ypes of polar atoms. Here, polar fragments with nitrogen and oxygen
lus “slightly polar ” fragments also contain phosphorus and sulfur het-
roatoms ( Todeschini and Consonni, 2000 ). This contribution to the in-
ibitory activity of each molecule can be evaluated with statistical meth-
ds as mentioned in the previous section. In this way justify and explain
ow quantitatively our independent variables influence the values of the
xperimental response or dependent variable (IC 50 ) in a linear relation
onforming the linearity assuption. 

.5. Statistical analysis of the descriptors contained in the final model 

The inhibition concentrations of the 17 analogous molecules were
valuated by means of a histogram which displays the range (X axis) and
requency (Y axis) of all IC 50 values. Fig. 4 shows that more IC 50 values
ere found at a concentration range of 0 to 10 μM. Intriguingly, follow-

ng the claims of the term “rational drug research and development ” one
ould rather expect not to see a “bell-shaped ” normal distribution. The

atter indicates a higher influence of randomly distributed activities of
ested drug candidates. Yet, the complicated and not fully understood
&D leads to results which more or less resemble a normal distribution.
his reflects an uncontrolled behavior of hits by mere chance events.
ere we learn that it has been more probable to find a lower activity

han a true hit, (for further discussions cf. Fig. 3 in Scior et al., 2009 ). 
A correlation matrix ( Fig. 5 ) was generated to inspect the relation-

hip between the inhibition constant IC 50 which is our DV and the
olecular descriptors that are our IDVs. 
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Table 3 

List of selected descriptors. 

Descriptor Short description by key words 

IC5 Information Content index (neighborhood symmetry of 5-order) 
R4p R autocorrelation of lag 4/weighted by polarizability 
R3s R autocorrelation of lag 3/weighted by I-state 
CATS3D_05_AL CATS3D Acceptor-Lipophilic BIN 05 (5.000 − 6.000 Å) 
CATS3D_06_AL CATS3D Acceptor-Lipophilic BIN 06 (6.000 − 7.000 Å) 
CATS3D_08_DL CATS3D Donor-Lipophilic BIN 08 (8.000 − 9.000 Å) 
SPH Spherosity 
VE1_RG coefficient sum of the last eigenvector (absolute values) from reciprocal squared geometrical matrix 
Mor03i signal 03/weighted by ionization potential 
Mor20s signal 20/weighted by I-state 
F06[N –O] Frequency of N - O at topological distance 6 
TDB10p 3D Topological distance-based descriptors - lag 10 weighted by polarizability 
B10[O 

–Cl] Presence/absence of O - Cl at topological distance 10 
BIC4 Bond Information Content index (neighborhood symmetry of 4-order) 
TPSA(Tot) topological polar surface area using N, O, S, P polar contributions 
SpMax3_Bh(s) largest eigenvalue n. 3 of Burden matrix weighted by I-state 

Table 4 

Listing of the preliminary equations by multiple linear regression. Estimated regression coeffi- 
cients AKA beta coefficients. 

M S MLR – equations 

1 4 IC 50 = 324.5128 - 67.6614x IC5 + 129.7029x R4p - 7.6931x R3s + 2.3503x CATS3D_05_AL 

2 4 IC 50 = 303.071 - 59.1084x IC5 + 112.3505x R4p - 9.5676x R3s + 1.8063x CATS3D_06_AL 

3 4 IC 50 = 2242.676 - 78.9514x IC5 - 1859.98x SPH - 3.5349x VE1_RG + 5.0594x CATS3D_05_AL 

4 3 IC 50 = 344.3994 - 73.9674x IC5 - 8.8394x Mor03i - 5.6325x F06[N 

–O] 

5 3 IC 50 = 313.1018 - 45.8712x IC5 - 7.5566x TDB10p - 9.1821x CATS3D_08_DL 

6 3 IC 50 = 353.5957 - 73.9994x IC5 - 6.9854x Mor03i - 7.0713x B10[O 

–Cl] 

7 2 IC 50 = 407.029 - 432.727x BIC4 + 8.2808x Mor20s 

8 2 IC 50 = 345.53907 – 333.96x BIC4 – 0.3131x TPSA(Tot) 

9 2 IC 50 = 305.1277 + 285.749x BIC4 - 5.4597x SpMax3_Bh(s) 

Descriptors are labeled in bold face . Abbreviations: M (model identification number); S (Size, 
number of descriptors, i.e. independent variables); in the MLR equation formulae: “x ” means 
“multiplied by ”; e.g. in model M9, + 285.749xBIC4 means 285.749 is the multiplication factor 
beta of descriptor value BIC4. Of note, each molecule has its own individual descriptor value and 
a spread sheet can be provided on request. 

Table 5 

Listing of QSAR models based on multiple linear regression (MLR) 
analysis using our R scripts (cf. Supplementary Materials). 

MLR -models Number of descriptors Value of R 2 Value of Q 

2 

Model 1 4 0.9203 0.8938 
Model 2 4 0.9181 0.8907 
Model 3 4 0.8354 0.7805 
Model 4 3 0.8275 0.7877 
Model 5 3 0.6649 0.5875 
Model 6 3 0.8142 0.7713 
Model 7 2 0.6794 0.6336 
Model 8 2 0.8883 0.8724 
Model 9 2 0.8525 0.8314 

Abbreviations: R 2 coefficient of determination; Q 

2 measures the con- 
sistency between the original and cross-validated prediction data 
applying the MLR equations. 

 

e  

a  

d  

v  

l  

I  

h  

s  

c  

a  

m  

(  

T  

p  

i  

s  

s

3

 

s  

m  

b  
The correlation matrix graph represents the relationship between
ach of the independent variables with the response or dependent vari-
ble. High correlations with values close to − 1 or + 1 correspond to
ark red or blue colors for a relationship with a negative or positive
Table 6 

Descriptors used to form the final model 8 with size 2 from

Molecular descriptors Information 

BIC4 Bond Information Content index (neig
TPSA(Tot) Topological polar surface area using N

7 
alue, respectively. No correlation is given by a value of 0 in either
ight red or blue colors. The descriptors are related to IC 50 , but the two
DVs BIC4 and TPSA ought to be really independent variables, so they
ave no relatedness between them. If both descriptors gave the same or
imilar molecular information any general rule (here QSAR equations)
ould not be drawn. They would be redundant, not essential and even
 risk to insert unnecessary noise to the data by two different instru-
entations (measurement errors): a case of QSAR pitfall by over-fitting

 Scior et al., 2009 ). Here, both descriptors correlate only weakly (0.43).
his indicates a very low dependency (redundancy) avoiding the QSAR
itfall of “non-independent variables ” (cf. section on “Pitfall: Collinear-
ty ” by Scior et al. (Scior et al., 2009) ). For practical purpose, both de-
criptors are considered uncorrelated and henceforth suitable to be in-
erted in the next step of QSAR model generation. 

.6. Construction of simple linear regression models 

In this part, the Simple Linear Regression ( SLR ) models are pre-
ented, for the two aforementioned descriptors. The two IDVs of MLR

odel 8 are BIC4 and TPSA . In SLR each one is correlated against the
iological response variable. Fig. 6–8 show the SLR graph obtained for
 Table 5 . 

Source 

hborhood symmetry of 4-order) Information indices 
,O,S,P polar contributions Molecular properties 
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Fig. 4. Histogram by R of the experimentally determined values of the half 
maximal inhibition concentrations IC 50 . The Y axis is a measure of occurrence 
(somehow a “frequency ”) of activities (probability density) which are repre- 
sented on the X axis. 

Fig. 5. Color-coded correlation matrix. The colors in dark red (blue) indicate 
values close to − 1 or + 1, respectively. Less intense colors symbolize little cor- 
relation, that is, close to 0. For abbreviations of the descriptors, cf. Table 3 . 

Fig. 6. Simple linear regression by R with one descriptor from model 8 yields 
a coefficient of determination R 2 = 0.68. 

Fig. 7. Simple linear regression by R with a coefficient of determination 
R 2 = 0.59 obtained with the TPSA descriptor. 
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Table 7 

Summary of the results for final model 8 obtained from multipl

Min 1Q M

− 6.368 − 3.812 −
Estimate (coefficients) S

(Intercept) 304.73773 3
BIC4 − 275.73141 4
TPSA(Tot) − 0.43316 0
Residual std error 5.736 

(on 14 DF) F

R 2 R 2 -adjusted 

0.8883 0.8724 5

Abbreviations: Min/Max = minimum/maximum value, 1Q/3D F
Freedom. 

8 
oth equations. In the SLR graph the experimentally determined values
f the biological response ( IC 50 exp ) lie on the Y axis versus (vs) the
alues of a numeric feature derived from parts of the chemical struc-
ure on the X axis. Such a descriptor here constitutes the bonding infor-
ation content type IV ( BIC4 ). The inhibition concentration values de-

rease when the values of the independent variable increase. This way,
hen the BIC4 values increase, the inhibitory response activity of the
olecules steadily decreases. As a direct consequence, a better inhibi-

ion of the TP enzyme will take place and in a similar way the TPSA

Tot) descriptor takes on a negative trend, i.e. a steady decrease. Pre-
isely, when the values of the independent variable increase as a direct
esult, the values of “IC 50 exp ” tend to decrease in a proportional and
onstant fashion. 

The analyses displayed in both figures ( Fig. 6 and 7 ) provide a most
aluable hint of how these two variables from final model 8 can in-
uence the inhibitory activity of each of the 17 analogous 3-formyl
oumarin molecules. Both variables combined in a Multiple Linear Re-
ression model yield excellent results in form of a very high R 

2 value
 Table 5 ). 
e linear regression (MLR). 

edian 3Q Max 

 2.177 3.47 13.737 
td error t -value pr( > lt l) 

7.25656 8.179 1.06E-06 
5.13938 − 6.108 2.70E-05 
.08462 − 5.119 0.000156 

-stat P -value 

5.69 2.165E-07 

irst/Third Quantile, F-stat = F - statistics, DF = Degrees of 
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Fig. 8. Statistical analysis of the multiple lin- 
ear regression model 8. It was obtained by 
R software with a P -value of 2.2 × 10 –7 and 
R 2 = 0.89 reflecting a very high statistical sig- 
nificance. 
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.7. Statistical analysis of the final model by MLR 

We analyzed how the descriptors contribute to the linear equations
f our QSAR models. In particular, we examined the question how they
erform to predict the biological activity according to their numeric
eight, AKA the estimate (of their beta coefficients in Table 7 ). In terms
f a graphical interpretation, the estimates can be seen as the inter-
ept and slope. A more mathematically rigid treatment assumes nor-
alized/standardized values/identical standard deviations of Y and X

alues. A numerical summary of results for QSAR model 8 is presented
n Table 7 . 

In sight of the well-behaving critical statistics, e.g. the very low p-
alue, the two values for R 

2 = 0.89 and R 

2 -adjusted = 0.87 close to
nit 1, it seems not far-fetched to conclude that the final QSAR model
as successfully established. It constitutes an acceptable model since for
iological test data a larger value range (variability in chemical space
nd biological response) must be tolerated, and therefore an R 

2 > 0.7 has
een considered as an acceptable threshold in the context of bioassays.
n addition, Fig. 8 shows those graphs which validate our multiple linear
egression model. 

Fig. 8 displays the graph of “Residuals versus fitted values ”. The
raph reflects whether our data have linear or non-linear patterns. In
ur case we can see that the residuals are well distributed since the red
ine remains in the center and does not form a parabola. On the other
and, the QQ quantile graph indicates the quartiles or percentiles of
ata. Here a normal distribution is formed since R takes the data by
rdering them in ascending order and compares them with perfectly
ormally distributed data. Our data approximate a normal distribution,
ince the points fall close to the straight line and points forming curved
ails or very scattered points are not observed. 

The “S- Location ” graph shows the distribution of the residuals. Their
alues are well distributed, since the red line is horizontal (not diagonal,
9 
uch less inclined) while all data points are randomly scattered with-
ut moving too far from the line along the X axis. Finally, the graph
abeled “Residuals vs Leverage ” identifies atypical values with variable
nfluence on the regression results. The variation can be observed by
he Cook’s distance lines for extreme data values. They lie close to the
ong lines influencing our linear regression. Removing the correspond-
ng data points would affect the result of our study. 

In the graph of “Residuals vs Leverage ”, data point number 12
s highly influential in our model . On the other hand, omitting this
alue would improve ( “inflate ”) our coefficient of determination (R 

2 ).
berrant input data (so called “outliers ”) omission to optimize R 

2 is
 sort of data manipulation to obtain better acceptance for publica-
ion of otherwise poor results ( Scior et al., 2009 ). This is why here all
7 coumarin compounds were treated without omission ( Taha et al.,
018 ). 

.8. Prediction of biological activity from our equation of the model 

btained 

Finally, the inhibition constant IC 50 was calculated, using the pro-
osed equation by multiple linear regression. All results are shown in
he following Table 8 . 

The experimental IC 50 data were compared to the corresponding
omputed values to obtain pairs of experimental and calculated data
oints in a XY graph ( Fig. 9 ). In an indirect way, the linearity assump-
ion is also confirmed here. It is needed to justify the choice of linear
SAR models in general and to avoid the aforementioned linearity pit-

all. Linearity here can be assumed at least for the limited segment of our
nput data where IC 50 have been made available through synthesis and
xperimental testing. Otherwise MLR would not have provided a deter-
ination coefficient as high as almost 0.9 for the final QSAR model 8
ith only two (highly informative) descriptors. 
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Table 8 

Results of the IC 50 from model 8 chosen as the most representative. 

ID Name IC 50 experimental IC 50 calculated Residual value (difference) 

1 114_L01_Fit16 13.4 8.93182 -4.46818 
2 112_L02_Fit16 29.3 31.47711 2.17711 
3 110_L03_Fit16 23.5 27.31199 3.81199 
4 108_L04_Fit16 3.5 0.92663 -2.57337 
5 106_L05_Fit16 1.2 6.10973 4.90973 
6 104_L06_Fit16 4.5 1.02980 -3.47020 
7 102_L07_Fit16 29.3 35.52186 6.22186 
8 100_L08_Fit16 1.3 4.84754 3.54754 
9 098_L09_Fit16 24.4 25.03044 0.63044 
10 096_L10_Fit16 31.2 27.77017 -3.42983 
11 094_L11_Fit16 34.5 29.70530 -4.79470 
12 092_L12_FitL16 38.3 24.56265 -13.73735 
13 090_L13_FitL16 41.6 36.43819 -5.16181 
14 088_L14_FitL16 53.5 55.94658 2.44658 
15 086_L15_FitL16 13.2 15.98440 2.78440 
16 082_L16_VegaFit 0.9 5.63986 4.73986 
17 084_L17_FitL16 16.3 22.66785 6.36785 

Fig. 9. Correlation diagram of computed versus experimental IC 50 values. The 
predicted IC 50 values from the QSAR model are located on the Y axis, while 
the X axis takes on the corresponding experimental values. Each pair forms one 
point in the XY graph. All points reflect a linear tendency. As a reference an ideal 
regression line was added to the data points. The graph was obtained applying 
the R software. 
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. Conclusion 

Computational molecular modeling has ushered a new area to study
hytopharmacological data at atomic scale. From the wealth of experi-
ental knowledge about coumarins and their pharmacological effects,
e selected a series of 3-formylcoumarins targeting human thymidine
hosphorylase (TP). The present QSAR study sheds light on the molec-
lar action mechanism proposing nine linear regression models. They
ere obtained by running scripts generated under the R statistics pro-
ram. Precisely, from final model 8 in-depth insight was drawn upon
etermination of two key molecular descriptors bond index content type
 (BIC4) and total polar surface area (TPSA). BIC4 and TPSA are defini-
ively the most essential ones to quantitatively explain how the struc-
ural diversity relates to experimentally observed inhibitory activity.
pon predicting their biological response power by interacting with a
ommon biomolecular target we sought giving a more general idea of
ow a quantitative study might improve the understanding of related-
ess between plant agents administered to patients in complementary
edicine and clinical data. In particular, we demonstrated how QSAR

tudies from the field of computational medicinal chemistry can be car-
ied out applying the R tool for the development of statistical models
10 
ith coumarins. Exploiting our findings, a new experimental study for
he 3-formylcoumarin-derived molecules can be envisaged. Hence, it is
ossible to optimize the structures to enhance target affinity. In the con-
ext of research and development (R&D), new compounds could be syn-
hesized and tested. 
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